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Outline of the Talk

I. Continuity in the Real World

II. Defining Continuity

III. Testing and Analyzing ‘Continuity’
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Testing a System for Trustworthiness

Sample the behavior often enough that continuity
covers the space between samples
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Safety Factors

Continuity isn’t enough – something needed like a
Lipschitz condition
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The Real-analysis Definition

The famous ‘ε − δ’ version:
DEFINITION: A real function f is continuous at

x0 iff: Given any ε > 0, ∃δ > 0 such that

∀x (|x − x0| < δ =⇒ |f(x) − f(x0)| < ε)

x0
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Discrete Functions

Approximating a function f ( )

with a discrete
approximation fd ( ), fd(x) = rnd(f(x)), integer x
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Rosenfeld’s Definition

DEFINITION: An integer function f defined on a
finite interval of the integers is discretely
continuous iff:
Given any ε ≥ 1, ∃δ ≥ 1 such that

∀x (|x − x0| ≤ δ =⇒ |f(x) − f(x0)| ≤ ε)
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Surprises?

The discretely continuous functions:

I have the intermediate value property:
if f(x) < m < f(y),∃z such that f(z) = m

I are closed under composition

I are not closed under arithmetic operations
B Let f(x) = x, for which fd is discretely

continuous everywhere. But fd + fd is
nowhere discretely continuous.
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Floating-point Continuity

A program “computes f to within 1%”:

I For all real x, program inputs will approximate
x with error at most δx, and for all input values
t such that |x − t| < δx the program output vt

at t will satisfy |(f(x) − vt)/f(x)| < .01

DEFINITION: The function F computed by a
program is floating-point continuous iff it
approximates a continuous function to the
accuracy of the program’s specification.

I Floating-point continuity: almost discrete
continuity ‘scaled’ by floating-point granularity
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Failure Continuity

DEFINITION: Program P has specification S. P
is failure continuous at x0 iff ∃b > 0 such that:

P (x0) 6= S(x0) =⇒ ∀t, |x0 − t| < b (P (t) 6= S(t))

S(x) = sin(x) ± 5%

1

00 π

P (x) = 1

x0

I Failure continuity is what Howden’s ‘reliable’
subdomains have
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Program Analysis with Reals Justified

I Program variables are not the real variables
we pretend they are

CONJECTURE: If a program computes by
symbolic execution a continuous real-valued
function, then: (1) The program is discretely
continuous over a suitable interval, and (2)
There is a specification accuracy for which the
program is floating-point continuous.

Proof? Choose the interval or the required
accuracy to be as poor as necessary.

I The converse is false
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Testing a Program for Continuity

I Imperative conditional statements are the
source of discontinuity

I On each path subdomain, programs compute
a real-variable polynomial
B Potential discontinuities can occur only on

path-subdomain boundaries
B Testing for continuity across a boundary

requires no oracle

I Functional languages might be better –
program continuities are closed under
composition
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Ideas to Explore in Continuity Analysis

Suppose a program for a continuous specification
is continuous.
What new kinds of analysis are possible?

I With Lipschitz conditions, good behavior on
test points spaced at some ∆ guarantees
correctness

I “Random structural testing” is a name for
using a uniform profile on each Lipschitz
neighborhood – it may not be intractable in the
ultrareliable region

I Exploit continuity in the self-testing/correcting
methods of Blum and Ammann
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Inherent Discontinuity

I Continuous specifications are important
B Flight- and process-control software
B Simulations of natural systems
B Regulatory-agency problems with software

replacing hardware

I But software’s forté is discontinuous
specifications that no other technology can
handle
B Chess-playing robots
B Compilers and other character-based

processors
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