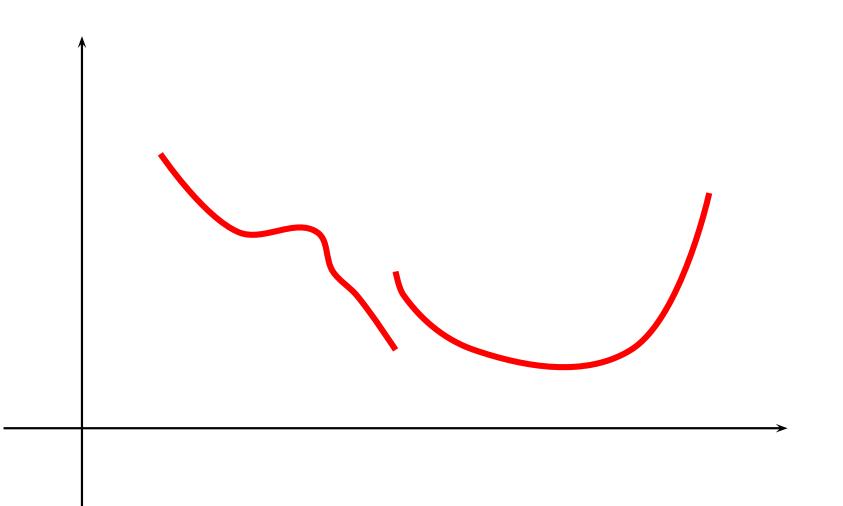
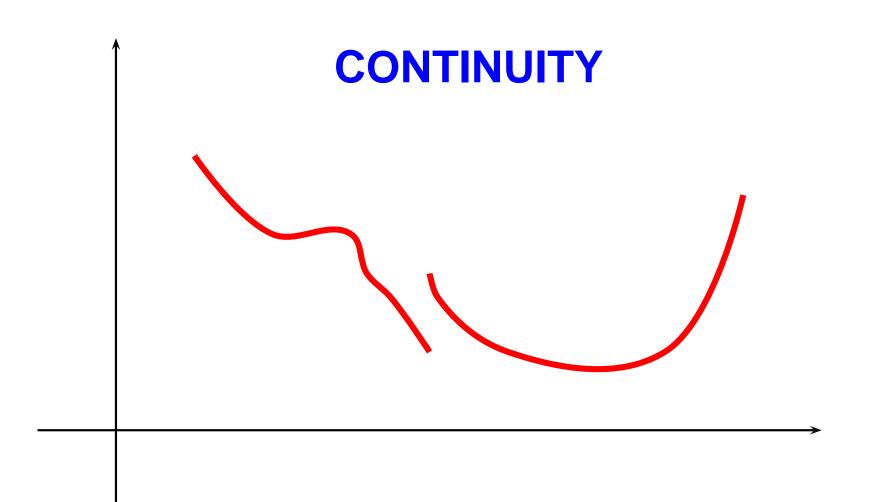
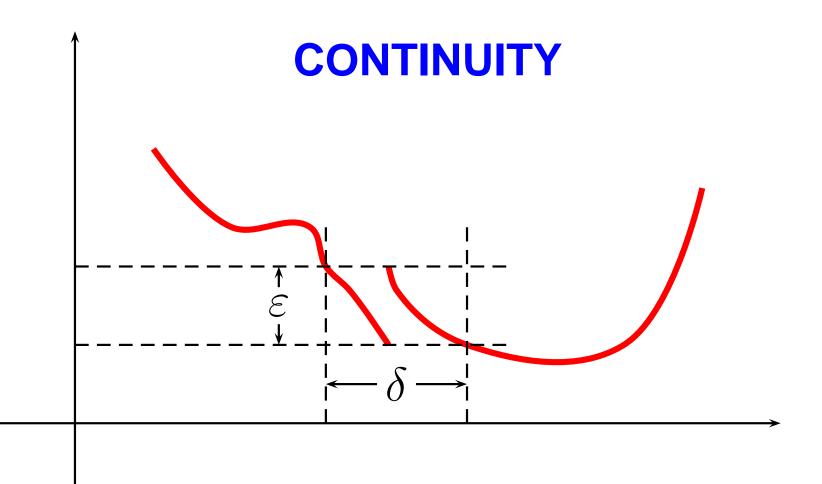
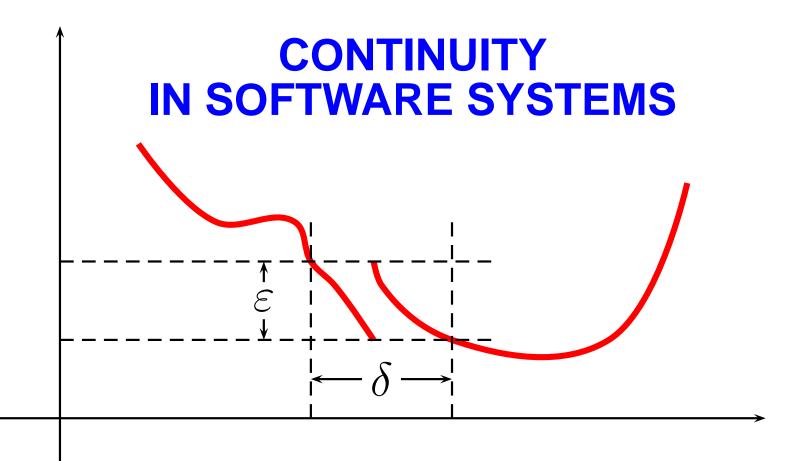
#### **Focus Slide**

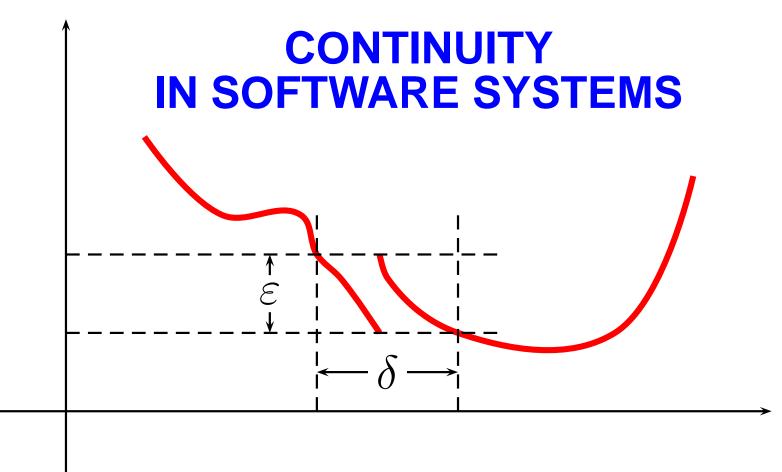












Dick Hamlet Portland State University Portland, OR, USA

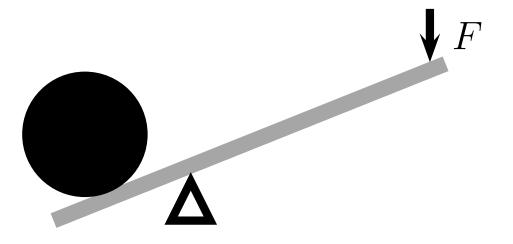
# **Outline of the Talk**

- I. Continuity in the Real World
- II. Defining Continuity
- III. Testing and Analyzing 'Continuity'

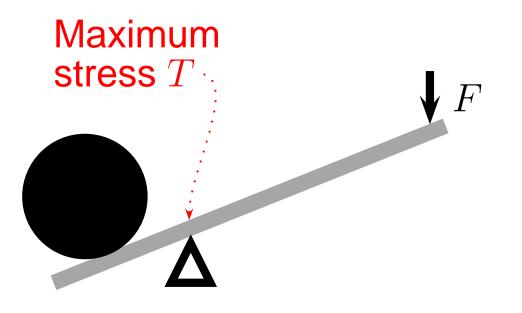
# **Outline of the Talk**

- I. Continuity in the Real World
- II. Defining Continuity
- III. Testing and Analyzing 'Continuity'

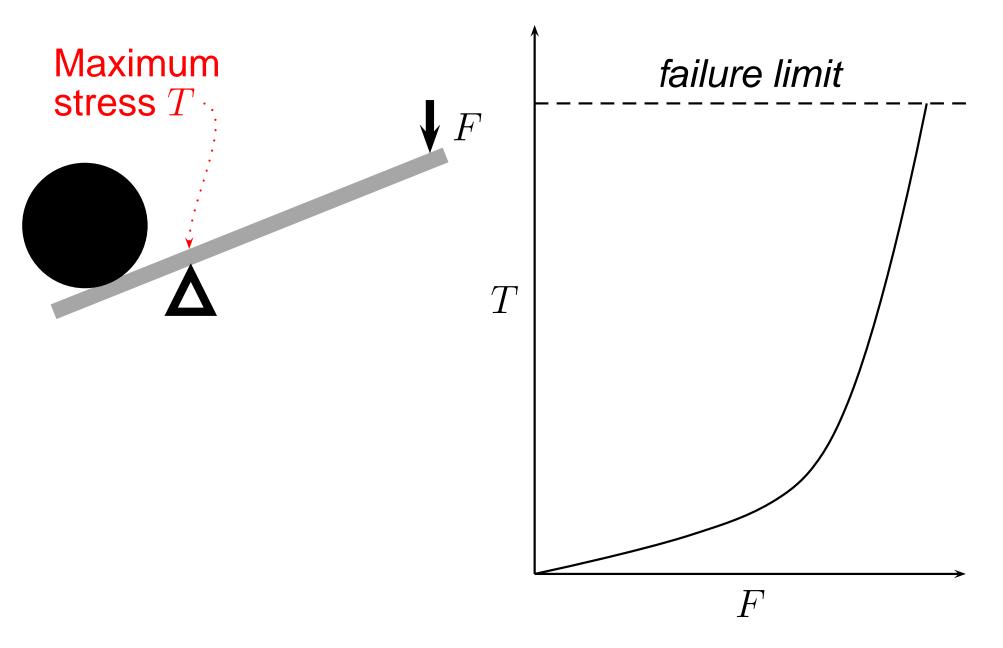
# **The Trustworthy Lever**



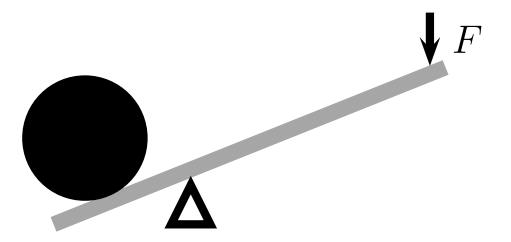
# **The Trustworthy Lever**



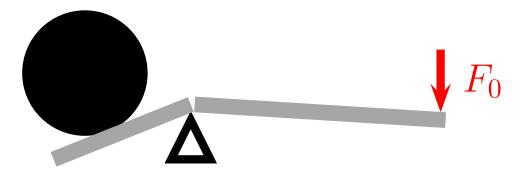
# **The Trustworthy Lever**



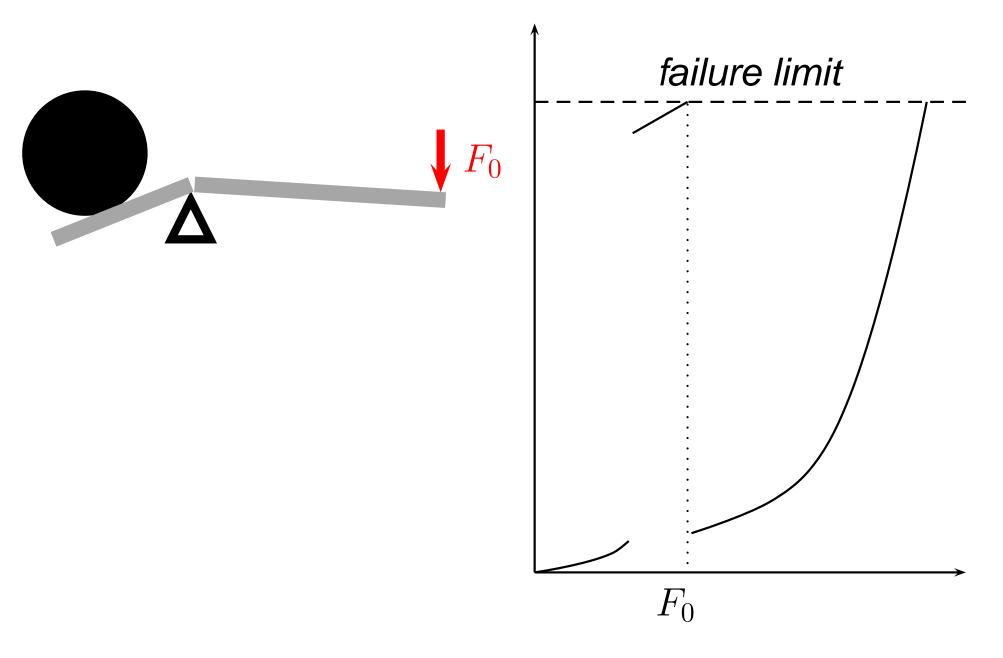
# **Untrustworthy Behavior**



# **Untrustworthy Behavior**

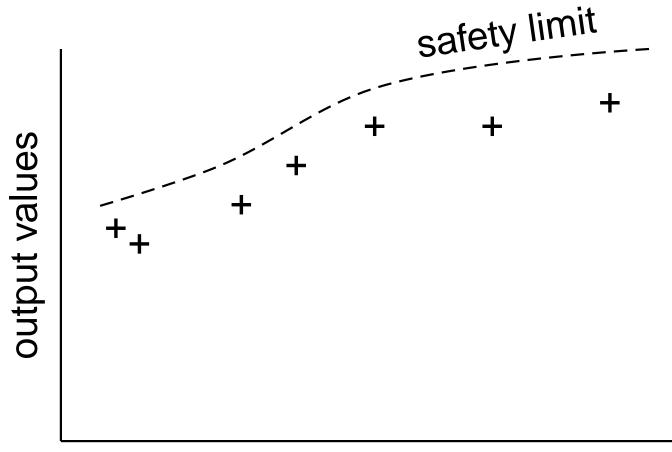


# **Untrustworthy Behavior**



# **Testing a System for Trustworthiness**

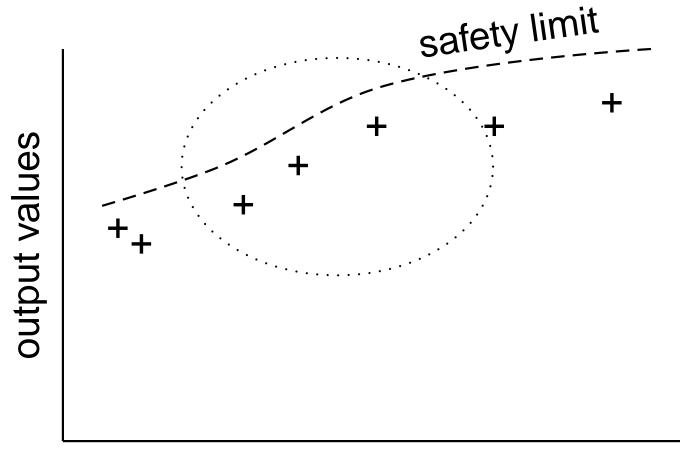
Sample the behavior often enough that continuity covers the space between samples



input conditions

# **Testing a System for Trustworthiness**

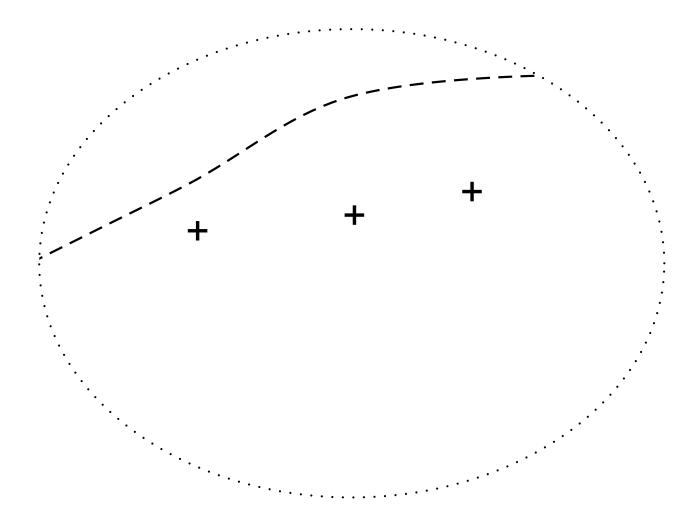
Sample the behavior often enough that continuity covers the space between samples



input conditions

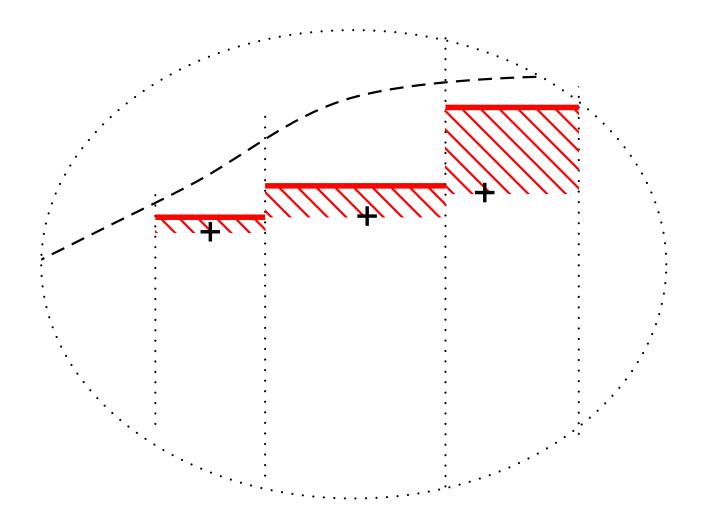
# **Safety Factors**

Continuity isn't enough – something needed like a Lipschitz condition



# **Safety Factors**

Continuity isn't enough – something needed like a Lipschitz condition



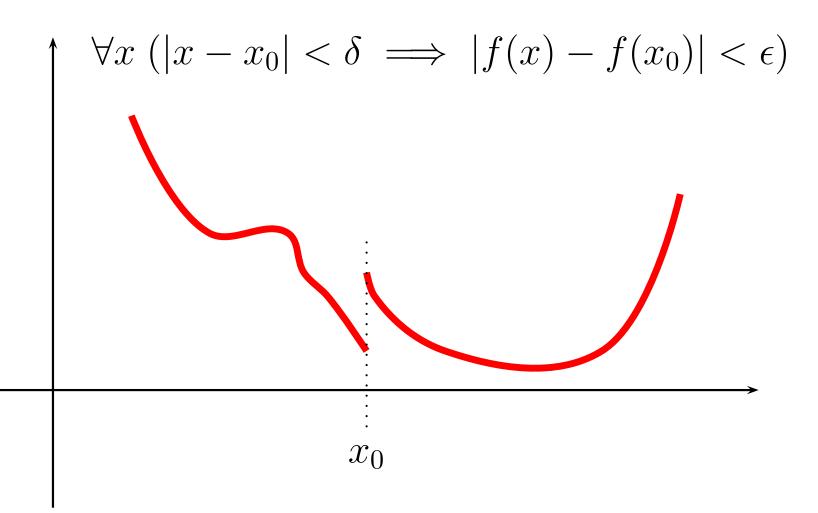
# **Outline of the Talk**

- I. Continuity in the Real World
- **II.** Defining Continuity
- III. Testing and Analyzing 'Continuity'

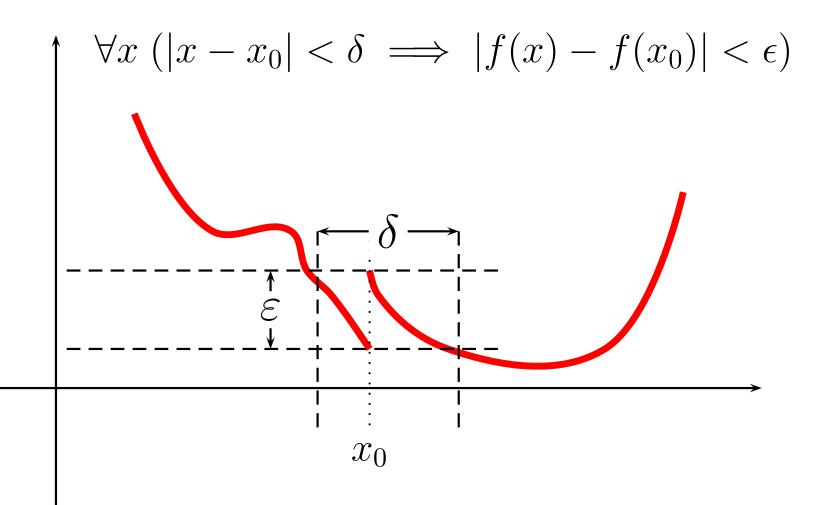
The famous ' $\varepsilon - \delta$ ' version:

$$\forall x (|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon)$$

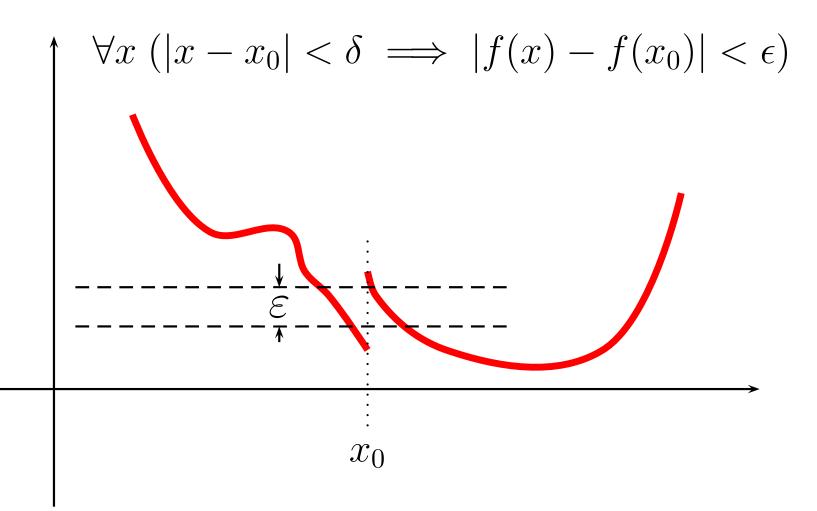
The famous ' $\varepsilon - \delta$ ' version:



The famous ' $\varepsilon - \delta$ ' version:

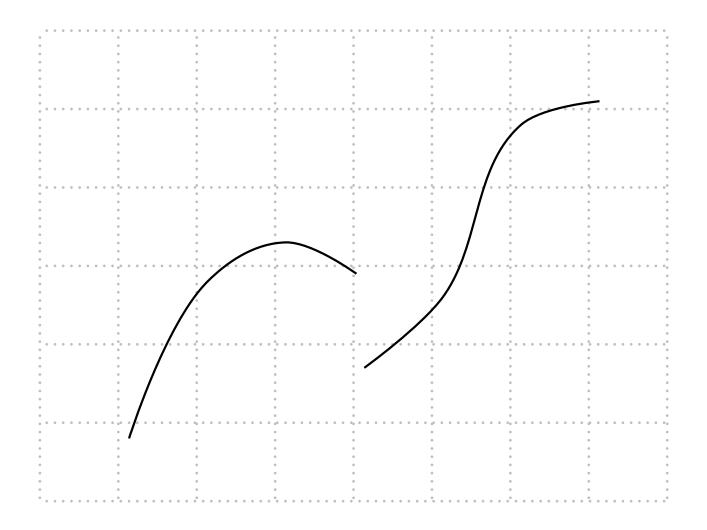


The famous ' $\varepsilon - \delta$ ' version:



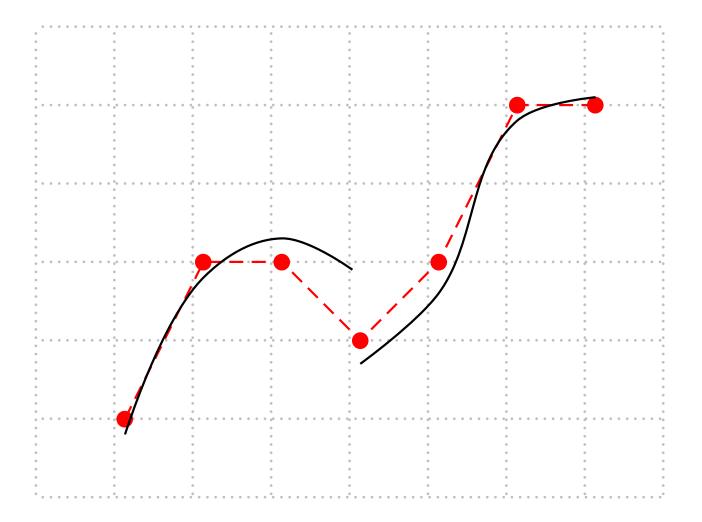
## **Discrete Functions**

#### Approximating a function $f(\sim)$



### **Discrete Functions**

Approximating a function  $f(\mathbf{r})$  with a discrete approximation  $f_d(\mathbf{r})$ ,  $f_d(x) = \operatorname{rnd}(f(x))$ , integer x

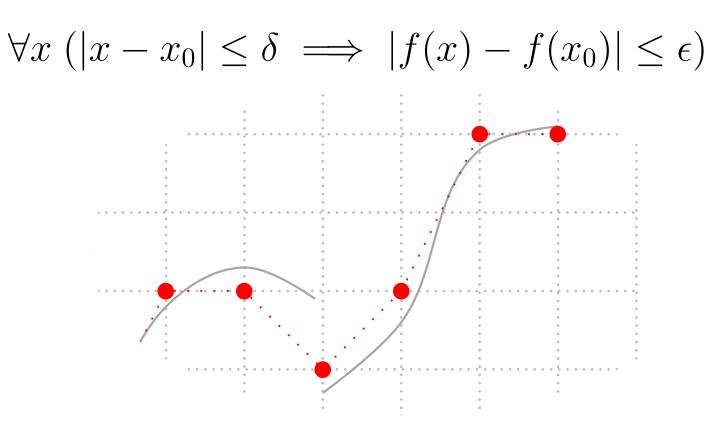


**DEFINITION:** An integer function f defined on a finite interval of the integers is *discretely continuous* iff: Given any  $\epsilon \ge 1$ ,  $\exists \delta \ge 1$  such that

$$\forall x (|x - x_0| \le \delta \implies |f(x) - f(x_0)| \le \epsilon)$$

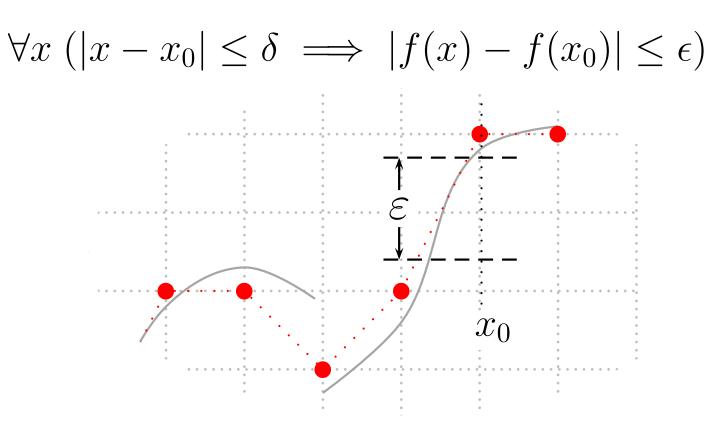
**DEFINITION:** An integer function f defined on a finite interval of the integers is *discretely continuous* iff:

Given any  $\epsilon \ge 1$ ,  $\exists \delta \ge 1$  such that



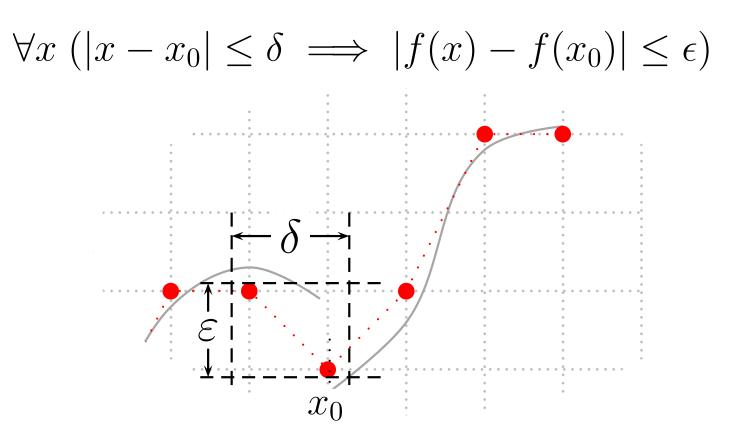
**DEFINITION:** An integer function f defined on a finite interval of the integers is *discretely continuous* iff:

Given any  $\epsilon \ge 1$ ,  $\exists \delta \ge 1$  such that



**DEFINITION:** An integer function f defined on a finite interval of the integers is *discretely continuous* iff:

Given any  $\epsilon \ge 1$ ,  $\exists \delta \ge 1$  such that



The discretely continuous functions:

► have the intermediate value property: if  $f(x) < m < f(y), \exists z \text{ such that } f(z) = m$ 

The discretely continuous functions:

- ► have the intermediate value property: if  $f(x) < m < f(y), \exists z \text{ such that } f(z) = m$
- ► are closed under composition

The discretely continuous functions:

- ▶ have the intermediate value property: if  $f(x) < m < f(y), \exists z \text{ such that } f(z) = m$
- ► are closed under composition
- ► are *not closed* under arithmetic operations

The discretely continuous functions:

- ► have the intermediate value property: if  $f(x) < m < f(y), \exists z \text{ such that } f(z) = m$
- ► are closed under composition
- ► are *not closed* under arithmetic operations
  - ▷ Let f(x) = x, for which  $f_d$  is discretely continuous everywhere. But  $f_d + f_d$  is nowhere discretely continuous.

# **Floating-point Continuity**

A program "computes f to within 1%":

- For all real x, program inputs will approximate x with error at most  $\delta_x$ , and for all input values t such that  $|x t| < \delta_x$  the program output  $v_t$  at t will satisfy  $|(f(x) v_t)/f(x)| < .01$
- **DEFINITION:** The function F computed by a program is floating-point continuous iff it approximates a continuous function to the accuracy of the program's specification.
- Floating-point continuity: almost discrete continuity 'scaled' by floating-point granularity

# **Failure Continuity**

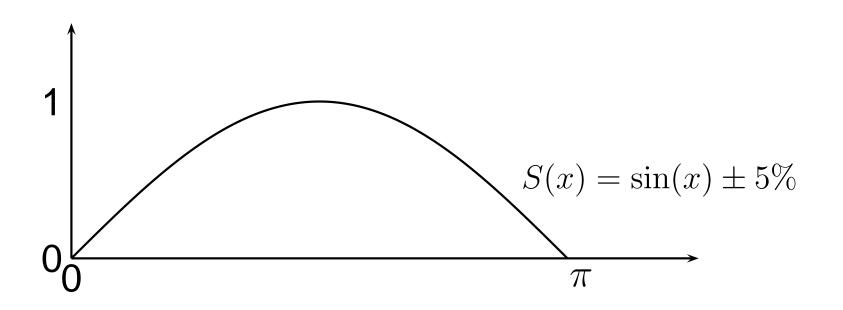
# **DEFINITION:** Program *P* has specification *S*. *P* is *failure continuous* at $x_0$ iff $\exists b > 0$ such that:

 $P(x_0) \neq S(x_0) \implies \forall t, |x_0 - t| < b \left( P(t) \neq S(t) \right)$ 

# **Failure Continuity**

# **DEFINITION:** Program *P* has specification *S*. *P* is *failure continuous* at $x_0$ iff $\exists b > 0$ such that:

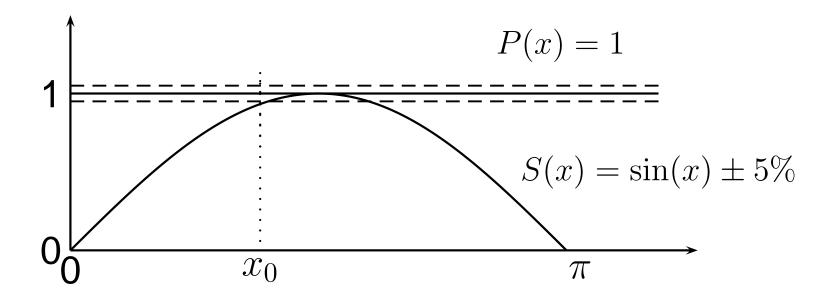
 $P(x_0) \neq S(x_0) \implies \forall t, |x_0 - t| < b \left( P(t) \neq S(t) \right)$ 



## Failure Continuity

# **DEFINITION:** Program *P* has specification *S*. *P* is *failure continuous* at $x_0$ iff $\exists b > 0$ such that:

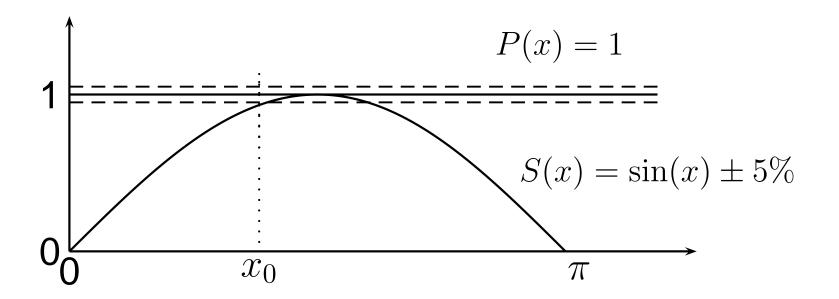
 $P(x_0) \neq S(x_0) \implies \forall t, |x_0 - t| < b \ (P(t) \neq S(t))$ 



# **Failure Continuity**

# **DEFINITION:** Program *P* has specification *S*. *P* is *failure continuous* at $x_0$ iff $\exists b > 0$ such that:

 $P(x_0) \neq S(x_0) \implies \forall t, |x_0 - t| < b \ (P(t) \neq S(t))$ 



Failure continuity is what Howden's 'reliable' subdomains have

## **Program Analysis with Reals Justified**

Program variables are not the real variables we pretend they are

**CONJECTURE:** If a program computes by symbolic execution a continuous real-valued function, then: (1) The program is discretely continuous over a suitable interval, and (2) There is a specification accuracy for which the program is floating-point continuous.

**Proof?** Choose the interval or the required accuracy to be as poor as necessary.

## **Program Analysis with Reals Justified**

Program variables are not the real variables we pretend they are

**CONJECTURE:** If a program computes by symbolic execution a continuous real-valued function, then: (1) The program is discretely continuous over a suitable interval, and (2) There is a specification accuracy for which the program is floating-point continuous.

**Proof?** Choose the interval or the required accuracy to be as poor as necessary.

► The converse is false

## **Outline of the Talk**

- I. Continuity in the Real World
- II. Defining Continuity
- III. Testing and Analyzing 'Continuity'

# **Testing a Program for Continuity**

- Imperative conditional statements are the source of discontinuity
- On each path subdomain, programs compute a real-variable polynomial
  - Potential discontinuities can occur only on path-subdomain boundaries
  - Testing for continuity across a boundary requires no oracle

# **Testing a Program for Continuity**

- Imperative conditional statements are the source of discontinuity
- On each path subdomain, programs compute a real-variable polynomial
  - Potential discontinuities can occur only on path-subdomain boundaries
  - Testing for continuity across a boundary requires no oracle
- Functional languages might be better program continuities are closed under composition

## **Ideas to Explore in Continuity Analysis**

Suppose a program for a continuous specification *is* continuous.

What new kinds of analysis are possible?

► With Lipschitz conditions, good behavior on test points spaced at some ∆ guarantees correctness

## **Ideas to Explore in Continuity Analysis**

Suppose a program for a continuous specification *is* continuous.

What new kinds of analysis are possible?

- ► With Lipschitz conditions, good behavior on test points spaced at some ∆ guarantees correctness
- "Random structural testing" is a name for using a uniform profile on each Lipschitz neighborhood – it may not be intractable in the ultrareliable region

## **Ideas to Explore in Continuity Analysis**

Suppose a program for a continuous specification *is* continuous.

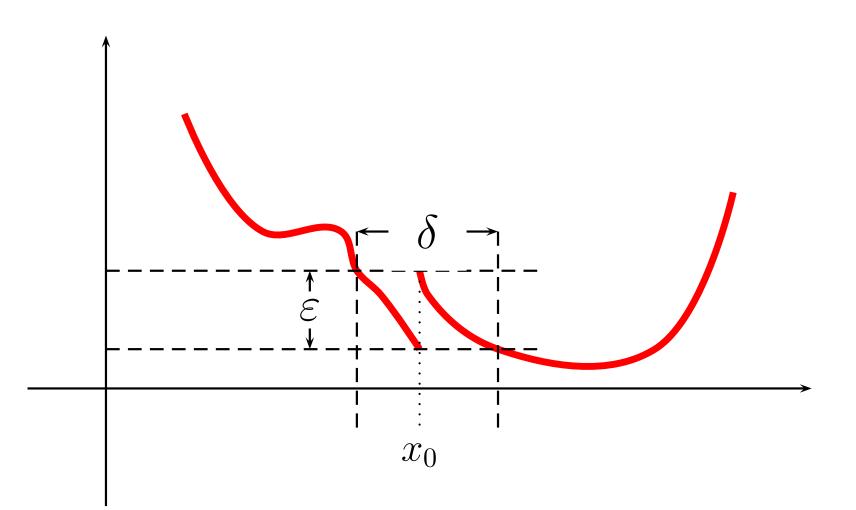
What new kinds of analysis are possible?

- ► With Lipschitz conditions, good behavior on test points spaced at some ∆ guarantees correctness
- "Random structural testing" is a name for using a uniform profile on each Lipschitz neighborhood – it may not be intractable in the ultrareliable region
- Exploit continuity in the self-testing/correcting methods of Blum and Ammann

# **Inherent Discontinuity**

- Continuous specifications are important
  - ▷ Flight- and process-control software
  - ▷ Simulations of natural systems
  - Regulatory-agency problems with software replacing hardware
- But software's forté is *discontinuous* specifications that no other technology can handle
  - Chess-playing robots
  - Compilers and other character-based processors

## **QUESTIONS?**



### **QUESTIONS?**

