
0/12

�

�

�

�

�

�

	

International Symposium on Software Testing and Analysis (ISSTA), Rome, Italy, 2002

Isolating Failure-Inducing
Thread Schedules

Andreas Zeller Jong-Deok Choi
Lehrstuhl für Softwaretechnik IBM T. J. Watson Research Center
Universität des Saarlandes, Saarbrücken Yorktown Heights, New York

1/12

�

�

�

�

�

�

	

How Thread Schedules Induce Failures

The behavior of a multi-threaded program can depend on the
thread schedule:

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

Schedule Thread A Thread B

✔

Thread
Switch

1/12

�

�

�

�

�

�

	

How Thread Schedules Induce Failures

The behavior of a multi-threaded program can depend on the
thread schedule:

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

Schedule Thread A Thread B

✔

Thread
Switch

open(".htpasswd")

open(".htpasswd")

read(...)

modify(...)

read(...)

write(...)

close(...)

modify(...)

write(...)

close(...)

Thread A Thread BSchedule

✘

1/12

�

�

�

�

�

�

	

How Thread Schedules Induce Failures

The behavior of a multi-threaded program can depend on the
thread schedule:

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

Schedule Thread A Thread B

✔

Thread
Switch

open(".htpasswd")

open(".htpasswd")

read(...)

modify(...)

read(...)

write(...)

close(...)

modify(...)

write(...)

close(...)

Thread A Thread BSchedule

✘
A’s updates

get lost!

Thread switches and schedules are nondeterministic:
Bugs are hard to reproduce and hard to isolate!

2/12

�

�

�

�

�

�

	

Recording and Replaying Runs

DEJAVU captures and replays program runs deterministically:

DEJAVU

recorded
schedule

record replay
x = 45
y = 39
z = 67

x = 45
y = 39
z = 67

x = 45
y = 39
z = 67

x = 45
y = 39
z = 67

Allows simple reproduction of schedules and induced failures

3/12

�

�

�

�

�

�

	

Differences between Schedules

Using DEJAVU, we can consider the schedule as an input which
determines whether the program passes or fails.

replay replay

✔ ✘

3/12

�

�

�

�

�

�

	

Differences between Schedules

Using DEJAVU, we can consider the schedule as an input which
determines whether the program passes or fails.

replay replay

✔ ✘

The difference between schedules is relevant for the failure:
A small difference can pinpoint the failure cause

4/12

�

�

�

�

�

�

	

Finding Differences

✘✔

t1

t2

t3

• We start with runs ✔ and ✘

• We determine the differences∆i between thread switches ti:

– t1 occurs in ✔ at “time” 254

– t1 occurs in ✘ at “time” 278

– The difference∆1 = |278− 254| induces a
statement interval: the code
executed between “time”
254 and 278

– Same applies to t2, t3, etc.

Our goal: Narrow down the difference such that only a small
relevant difference remains, pinpointing the root cause

5/12

�

�

�

�

�

�

	

Isolating Relevant Differences

We use Delta Debugging to isolate the relevant differences

Delta Debugging applies subsets of differences to ✔:

✘✔ ?

• The entire difference∆1 is applied

• Half of the difference∆2 is applied

• ∆3 is not applied at all

DEJAVU executes the debuggee under this generated
schedule; an automated test checks if the failure occurs

6/12

�

�

�

�

�

�

	

The Isolation Process

Delta Debugging systematically narrows down the difference

✘✔ ?

✔ ✘

Dejavu replays
the generated
schedule

Test outcome

7/12

�

�

�

�

�

�

	

A Real Program

We examine Test #205 of the SPEC JVM98 Java test suite:
a raytracer program depicting a dinosaur

Program is single-threaded—the multi-threaded code is
commented out

7/12

�

�

�

�

�

�

	

A Real Program

We examine Test #205 of the SPEC JVM98 Java test suite:
a raytracer program depicting a dinosaur

Program is single-threaded—the multi-threaded code is
commented out

To test our approach,

• we make the raytracer program multi-threaded again

• we introduce a simple race condition

• we implement an automated test that would check whether
the failure occurs or not

• we generate random schedules until we obtain both a
passing schedule (✔) and a failing schedule (✘)

8/12

�

�

�

�

�

�

	

Passing and Failing Schedule

We obtain two schedules with 3,842,577,240 differences,
each moving a thread switch by ±1 “time” unit

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

1.8e+08

0 10 20 30 40 50 60 70 80 90 100

T
im

e
(#

 y
ie

ld
 p

oi
nt

s)

�

Thread switches

Thread Schedules

Failing Schedule
Passing Schedule

9/12

�

�

�

�

�

�

	

Narrowing Down the Failure Cause

Delta Debugging isolates one single difference after 50 tests:

1e+11

1e+12

1e+13

1e+14

0 5 10 15 20 25 30 35 40 45 50

D
el

ta
s

�

Tests executed

Delta Debugging Log

cpass
cfail

10/12

�

�

�

�

�

�

	

The Root Cause of the Failure

25 public class Scene { ...
44 private static int ScenesLoaded = 0;
45 (more methods. . .)
81 private
82 int LoadScene(String filename) {
84 int OldScenesLoaded = ScenesLoaded;
85 (more initializations. . .)
91 infile = new DataInputStream(...);
92 (more code. . .)

130 ScenesLoaded = OldScenesLoaded + 1;
131 System.out.println("" +

ScenesLoaded + " scenes loaded.");
132 ...
134 }
135 ...
733 }

11/12

�

�

�

�

�

�

	

Lessons Learned

Delta Debugging is efficient even when applied to very large
thread schedules

Programs are “mostly correct” w.r.t. the thread schedule
⇒ Delta Debugging works like a binary search

11/12

�

�

�

�

�

�

	

Lessons Learned

Delta Debugging is efficient even when applied to very large
thread schedules

Programs are “mostly correct” w.r.t. the thread schedule
⇒ Delta Debugging works like a binary search

No analysis is required as Delta Debugging relies on
experiments alone

Only the schedule was observed and altered

Failure-inducing thread switch is easily associated with code

11/12

�

�

�

�

�

�

	

Lessons Learned

Delta Debugging is efficient even when applied to very large
thread schedules

Programs are “mostly correct” w.r.t. the thread schedule
⇒ Delta Debugging works like a binary search

No analysis is required as Delta Debugging relies on
experiments alone

Only the schedule was observed and altered

Failure-inducing thread switch is easily associated with code

Alternate runs can be obtained automatically by generating
random schedules

Only one initial run (✔ or ✘) is required

11/12

�

�

�

�

�

�

	

Lessons Learned

Delta Debugging is efficient even when applied to very large
thread schedules

Programs are “mostly correct” w.r.t. the thread schedule
⇒ Delta Debugging works like a binary search

No analysis is required as Delta Debugging relies on
experiments alone

Only the schedule was observed and altered

Failure-inducing thread switch is easily associated with code

Alternate runs can be obtained automatically by generating
random schedules

Only one initial run (✔ or ✘) is required

The whole approach is annoyingly simple in comparison to
many other ideas we initially had

12/12

�

�

�

�

�

�

	

Conclusion

Debugging multi-threaded applications is easy:

• Record/Replay tools like DEJAVU reproduce runs

• Delta Debugging pinpoints the root cause of the failure

Debugging can do without analysis:

• It suffices to execute the debuggee under changing
circumstances

There is still much work to do:

• More case studies (as soon as DEJAVU can handle GUIs)

• Using program analysis to guide the narrowing process

• Isolating cause-effect chain from root cause to failure

http://www.st.cs.uni-sb.de/dd/
http://www.research.ibm.com/dejavu/

http://www.st.cs.uni-sb.de/dd/
http://www.research.ibm.com/dejavu/

	How Thread Schedules Induce Failures
	How Thread Schedules Induce Failures
	How Thread Schedules Induce Failures
	Recording and Replaying Runs
	Differences between Schedules
	Differences between Schedules
	Finding Differences
	Isolating Relevant Differences
	The Isolation Process
	A Real Program
	Passing and Failing Schedule
	Narrowing Down the Failure Cause
	The Root Cause of the Failure
	Lessons Learned
	Conclusion

