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How Thread Schedules Induce Failures

The behavior of a multi-threaded program can depend on the
thread schedule:

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

open(".htpasswd")

read(...)

modify(...)

write(...)

close(...)

Schedule Thread A Thread B

✔

Thread
Switch
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✘
A’s updates

get lost!

Thread switches and schedules are nondeterministic:
Bugs are hard to reproduce and hard to isolate!
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Recording and Replaying Runs

DEJAVU captures and replays program runs deterministically:

DEJAVU

recorded
schedule

record replay
x = 45
y = 39
z = 67

x = 45
y = 39
z = 67

x = 45
y = 39
z = 67

x = 45
y = 39
z = 67

Allows simple reproduction of schedules and induced failures
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Differences between Schedules

Using DEJAVU, we can consider the schedule as an input which
determines whether the program passes or fails.

replay replay

✔ ✘
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Differences between Schedules

Using DEJAVU, we can consider the schedule as an input which
determines whether the program passes or fails.

replay replay

✔ ✘

The difference between schedules is relevant for the failure:
A small difference can pinpoint the failure cause
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Finding Differences

✘✔

t1

t2

t3

• We start with runs ✔ and ✘

• We determine the differences∆i between thread switches ti:

– t1 occurs in ✔ at “time” 254

– t1 occurs in ✘ at “time” 278

– The difference∆1 = |278− 254| induces a
statement interval: the code
executed between “time”
254 and 278

– Same applies to t2, t3, etc.

Our goal: Narrow down the difference such that only a small
relevant difference remains, pinpointing the root cause
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Isolating Relevant Differences

We use Delta Debugging to isolate the relevant differences

Delta Debugging applies subsets of differences to ✔:

✘✔ ?

• The entire difference∆1 is applied

• Half of the difference∆2 is applied

• ∆3 is not applied at all

DEJAVU executes the debuggee under this generated
schedule; an automated test checks if the failure occurs
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The Isolation Process

Delta Debugging systematically narrows down the difference

✘✔ ?

✔ ✘

Dejavu replays
the generated
schedule

Test outcome
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A Real Program

We examine Test #205 of the SPEC JVM98 Java test suite:
a raytracer program depicting a dinosaur

Program is single-threaded—the multi-threaded code is
commented out
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A Real Program

We examine Test #205 of the SPEC JVM98 Java test suite:
a raytracer program depicting a dinosaur

Program is single-threaded—the multi-threaded code is
commented out

To test our approach,

• we make the raytracer program multi-threaded again

• we introduce a simple race condition

• we implement an automated test that would check whether
the failure occurs or not

• we generate random schedules until we obtain both a
passing schedule (✔) and a failing schedule (✘)
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Passing and Failing Schedule

We obtain two schedules with 3,842,577,240 differences,
each moving a thread switch by ±1 “time” unit
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Narrowing Down the Failure Cause

Delta Debugging isolates one single difference after 50 tests:
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The Root Cause of the Failure

25 public class Scene { ...
44 private static int ScenesLoaded = 0;
45 (more methods. . . )
81 private
82 int LoadScene(String filename) {
84 int OldScenesLoaded = ScenesLoaded;
85 (more initializations. . . )
91 infile = new DataInputStream(...);
92 (more code. . . )

130 ScenesLoaded = OldScenesLoaded + 1;
131 System.out.println("" +

ScenesLoaded + " scenes loaded.");
132 ...
134 }
135 ...
733 }
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Lessons Learned

Delta Debugging is efficient even when applied to very large
thread schedules

Programs are “mostly correct” w.r.t. the thread schedule
⇒ Delta Debugging works like a binary search
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No analysis is required as Delta Debugging relies on
experiments alone

Only the schedule was observed and altered

Failure-inducing thread switch is easily associated with code
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Only one initial run (✔ or ✘) is required
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Lessons Learned

Delta Debugging is efficient even when applied to very large
thread schedules

Programs are “mostly correct” w.r.t. the thread schedule
⇒ Delta Debugging works like a binary search

No analysis is required as Delta Debugging relies on
experiments alone

Only the schedule was observed and altered

Failure-inducing thread switch is easily associated with code

Alternate runs can be obtained automatically by generating
random schedules

Only one initial run (✔ or ✘) is required

The whole approach is annoyingly simple in comparison to
many other ideas we initially had
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Conclusion

Debugging multi-threaded applications is easy:

• Record/Replay tools like DEJAVU reproduce runs

• Delta Debugging pinpoints the root cause of the failure

Debugging can do without analysis:

• It suffices to execute the debuggee under changing
circumstances

There is still much work to do:

• More case studies (as soon as DEJAVU can handle GUIs)

• Using program analysis to guide the narrowing process

• Isolating cause-effect chain from root cause to failure

http://www.st.cs.uni-sb.de/dd/
http://www.research.ibm.com/dejavu/

http://www.st.cs.uni-sb.de/dd/
http://www.research.ibm.com/dejavu/
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